Retrieved by Pat Darnell | 31 May 2011 | Bryan TX
Hofstadter, Gödel, Escher, Bach
" ... All consistent axiomatic formulations of number theory include undecidable propositions ...[Bottom Picture found HERE. "metacognition"]
Gödel showed that provability is a weaker notion than truth, no matter what axiom system is involved ...
How can you figure out if you are sane? ... Once you begin to question your own sanity, you get trapped in an ever-tighter vortex of self-fulfilling prophecies, though the process is by no means inevitable. Everyone knows that the insane interpret the world via their own peculiarly consistent logic; how can you tell if your own logic is "peculiar' or not, given that you have only your own logic to judge itself? I don't see any answer. I am reminded of Gödel's second theorem, which implies that the only versions of formal number theory which assert their own consistency are inconsistent.
The other metaphorical analogue to Gödel's Theorem which I find provocative suggests that ultimately, we cannot understand our own mind/brains ... Just as we cannot see our faces with our own eyes, is it not inconceivable to expect that we cannot mirror our complete mental structures in the symbols which carry them out? All the limitative theorems of mathematics and the theory of computation suggest that once the ability to represent your own structure has reached a certain critical point, that is the kiss of death: it guarantees that you can never represent yourself totally. (Denton, William. 22 Mar 2009. HERE. Gödel's Incompleteness Theorem) ... "
*
*
*
No comments:
Post a Comment